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M
y favorite teaching assignments are 
those that involve students whose 
mathematical abilities exceed my 
own. Usually, my experience permits 
me to stay a step or two ahead of 

such students, but their observations and ques-
tions—borne of creativity and innate ability and 
coupled with youthful curiosity and mathematical 
intuition—occasionally lead me, and them, into 
uncharted waters. Such was the genesis of Cosby’s 
rule. This is the story of what Cosby’s rule is, how 
it came to be, and the effect that it had on an AP 
Calculus class in a small school in rural Georgia.

Washington-Wilkes Comprehensive High School 
is on a 4 × 4 block schedule. Calculus offered during 
the first semester includes students who intend to 
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take the AP (AB) examination in the spring as well 
as students who want to take just one semester of 
calculus to prepare for college-level mathematics. The 
mathematics program at WWCHS is solid, and the 
students who register for calculus are well prepared. 
During the 2007–8 school year, the first-semester 
class was small, as many calculus classes are, but the 
second-semester class, as a result of the exodus of the 
non-AP candidates, numbered just four students. 

Ian and Ashley had been active participants dur-
ing the first semester—every assignment would 
prompt them to ask substantial questions about alter-
native methods and underlying theory—and I often 
used their questions to gauge the level of understand-
ing of their classmates. Many were less inclined to 
ask questions but often commented, “Yeah, I didn’t 
understand that, either,” and then would become 
quite involved in subsequent discussions. John vol-
unteered only occasionally in class but seemed to 
be totally comfortable with most of the material, as 
his outstanding performance on every assessment 
confirmed. Josh, whose mathematical talents were 
revealed only in his work, had remained quiet during 
most of the first semester, rarely saying a word unless 
specifically called on and even then saying as little as 
possible. For the most part, John and Josh had been 
disengaged throughout the first semester. 

All this changed when the second semester 
began. The small class size provided an expanded 
comfort zone in which all these students could feel 
safe in their pursuit of understanding. John and 
Josh became active participants in the class, match-
ing Ian and Ashley in both quality and quantity of 
observations and questions. 

When justifying their work, my students knew 
that if their justification included faulty mathemat-
ics, and if we were pressed for time, and if the error 
was fairly commonplace, I, like many teachers, 
might just say, “That won’t work because …” and 
point out the error. They also knew that I rarely 
responded in that way. I preferred to have them 
assess the situation themselves, answering one 
another’s questions and exploring one another’s 
ideas through classroom discourse. 

In our small group, the students quickly lost 
their inhibitions about asking and answering ques-
tions and suggesting ideas that we could explore. 
A daily ritual soon evolved in which all four, now 
unabashed in their explanations of their work, could 
consider an assortment of ideas. Of course, such 
conversations usually centered on applications—
how they interpreted the problem, how they set it 
up, which methods they used to find solutions, and 
so forth. Only infrequently would a student come up 
with a new idea for an algorithmic procedure. 

Students at all levels often generate ideas that are 
not obviously right or wrong, and, when they do, it 

is productive to take time to explore the ideas as a 
group. Some of these ideas are really strange. Occa-
sionally, they are so strange that even the teacher 
might not know what to think of them. 

Such was the case when I asked Josh how he 
had worked a problem from our textbook. First-
semester calculus topics include limits and differ-
entiation, while second semester begins with an 
introduction to integration. Following the textbook 
chapter, the students worked first with antideriva-
tives and basic integration rules and then were 
introduced to summation notation, summation for-
mulas, the area of a plane region, upper and lower 
sums, and finding the area by the limit definition. 

RIEMANN SUMS FOR AREA
The problem in question was no. 51 from Cal-
culus of a Single Variable (Larson, Hostetler, and 
Edwards 2006, sec. 4.2, p. 269): 

 Use the limit process to find the area of the region 
between the graph of the function and the x-axis 
over the given interval:  y = 16 – x2 on [1, 3]

A more or less traditional solution follows.
Create an n-partition of the interval [1, 3]; then 

the size of each part is ∆x = (2/n). We exclude the 
function on the ith subinterval using 
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for i = 1 to n. Then we have the following: 
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When asked how he had worked the problem, 
Josh said that he had taken the coefficient of each 
numerator, divided by the exponent in the denomi-
nator, and added those results. He had noticed a 
pattern in the examples and explained further: “I 
got to the summation notation (1), and then I just 
sort of mentally multiplied through by the (2/n)(2). I 
divided the reduced number in the numerator by the 
exponent of n in the denominator. Then I added all 
of that together. It worked on the first four problems, 
but that’s all I did.” Josh had completely omitted the 
steps marked with an asterisk in the solution above, 
whereas the other members of the class had gone 
through these or similar traditional calculations. 

Although the other members of the class were 
skeptical about Josh’s method, we dubbed his 
approach Cosby’s rule and set out to determine 
whether it seemed to work all the time, some of 
the time, occasionally, or just on those first four 
problems. I had never seen such a shortcut, but I 
encouraged the class to keep comparing the tradi-
tional approach with Cosby’s rule. The students 
looked back through the assignment, checking their 
calculations against the proposed shortcut, working 
any problems as yet undone, and marveling at the 
fact that Cosby’s rule would have worked for every 
problem. Then they intently worked through prob-
lems that had not been assigned and discovered that 
the rule continued to hold. 

The students enjoyed the investigation and ben-
efitted from practicing the summation operations. 
In addition, the class came alive with thoughtful 
and excited mathematical conversation. As the 
investigation continued into the next textbook top-
ics—Riemann sums and indefinite integrals—they 
were convinced that Josh had found something. But 
no one was ready to say exactly what that was.

HOW COSBY’S RULE WORKS
This seemed to be a good time to explain how 
Cosby’s rule worked. To do so, we needed to see a 
connection between the summation notation, the 
definition of Riemann sums, the definition of the 
definite integral, and the fundamental theorem of 
calculus (addressed in the next section of the book). 

Josh did not ignore the mathematical symbol 
for summation and the i notation; rather, he recog-
nized the effect of the summation operations. The 
key to Cosby’s rule lies in the denominators. To 
show how the rule works, we need to prove the fol-
lowing proposition:

Cosby’s rule: For each positive integer k, we have
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Most mathematics books provide summation 
formulas for ∑i, ∑i2, and ∑i3 to use in the limit for-
mulas, and we can use those formulas to show how 
the formula given in the proposition above holds 
for k = 0, 1, and 2.

For k = 0: 
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For k = 1: 
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Taking advantage of this information, we can 
understand how Josh was able to omit the aster-
isked steps, but there are usually no textbook for-
mulas when k > 3, and formulas for these sums are 
messy to state and derive. Fortunately, we do not 
need an explicit formula but can use telescoping 
sums to establish the limit given in Cosby’s rule. 

Before tackling the general case, we illustrate the 
argument for k ≤ 3.

For k = 1: 
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and, finally, 
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when we take the limit as n → ∞, we have the 
following:
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is in agreement with Cosby’s rule.
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Dividing by 4n4, we obtain the following:
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and, by the squeeze principle,
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is in agreement with Cosby’s rule.

For general k:
For general k, then, we can follow this same path 
and see that 
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where p is a polynomial of degree k – 1. Dividing by 
(nk+1)(k + 1), we get
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Taking the limit as n → ∞, we obtain the full force 
of Cosby’s rule: 
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Let f be defined on the closed interval [0, 1]. For 
each positive integer n, take ∆x = 1/n, and ci = i/n 
for i = 1, …, n. 

Then the sum
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is a Riemann sum. If
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exists, this limit is called the definite integral of f 
from 0 to 1, denoted as
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Applying this to f(x) = xk on the interval [0, 1], we 
obtain the following:
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Therefore,
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Saying that

xxx

R f c x

R

f x dx

R
i
n

n i
i

n

n n

n

= ( )∆

=






=

→∞

∑

∫

1

0

1

lim

( ) .

ii

n
k k

k
i

n

n n n

k

k

n
i

n

R
i

n

=
+

=

→∞ →∞ +

∑ ∑





=

=

1
1

1

1

lim lim
11

1

0

1

1
1

0

1

1
1

1
1

i

n

k

n

k

k
i

n

k

x
k

i

n k

x d

=

→∞ +
=

∑

∫

∑

∫

=
+

=
+

.

lim .

xx
k

=
+
1

1

is the same as saying that
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This is precisely the limit Josh evaluated, and the 
result of Cosby’s rule is equivalent to evaluating the 
definite integral: 
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WHAT JOSH DISCOVERED 
There are two equally valid ways of looking at 
Cosby’s rule: (1) Josh intuited a special case of the 
fundamental theorem of calculus; or (2) once we 
have the fundamental theorem, we can get a quick 
proof of Cosby’s rule.

My students did not have enough experi-
ence with these symbols to articulate—much less 
prove—what Josh had discovered. Initially, they 
had never heard of indefinite integrals or the fun-
damental theorem of calculus. But as they contin-
ued to work through the investigation and became 
immersed in these concepts, their understanding of 
new topics was better assimilated. Their transition 
from summation operations to integration and the 
fundamental theorem of calculus was clearly more 
complete than had they not explored Cosby’s rule. 

My students’ curiosity about the validity and 
utility of Cosby’s rule took them places I could 
never have taken them alone, and their excitement 
transcended the classroom itself. Within days, they 
had discussed Cosby’s rule with the first-semester 

class members and with the other mathematics 
teachers. One student even called his girlfriend, 
who was taking the BC course in an Arizona 
school, to see if she could figure it out. The whole 
school was abuzz about Cosby’s rule.

As often as possible, I try to capitalize on stu-
dents’ ideas to promote discourse and understand-
ing. Usually, within a class period, students can be 
guided toward a confirmation of a classmate’s con-
jecture or show it to be false. In this case, however, 
I admit that I did not know how to explain Cosby’s 
rule fully. Using a classroom discovery approach 
was as much for my benefit as for my students’. 

Especially exciting for the students was to be a 
part of the process—to see how definitions, rules, 
and theorems of mathematics might be developed 
over time, as when someone notices a pattern or 
unusual result and tries to prove that something is 
true. For me, this investigation was a reminder not 
to dismiss students’ observations as simple coinci-
dences but to use those observations to stimulate 
students’ curiosity and enthusiasm. In this way 
they build deeper and more meaningful mathemati-
cal understanding.
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